Identification of residues in glutathione transferase capable of driving functional diversification in evolution. A novel approach to protein redesign.
نویسندگان
چکیده
Evolution of protein function can be driven by positive selection of advantageous nonsynonymous codon mutations that arise following gene duplication. By observing the presence and degree of site-specific positive selection for change between divergent paralogs, residue positions responsible for functional changes can be identified. We applied this analysis to genes encoding Mu class glutathione transferases, which differ widely in substrate specificities. Approximately 3% of the amino acid residue positions, both near to and distant from the active site, are under statistically significant positive selection for change. Relevant human glutathione transferase (GST) M1-1 and GST M2-2 codons were mutated. A chemically conservative threonine to serine mutation in GST M2-2 elicited a 1,000-fold increase in specific activity with the GST M1-1-specific substrate trans-stilbene oxide and a 30-fold increase with the alternative epoxide substrates styrene oxide and nitrophenyl glycidol. The reverse mutation in GST M1-1 resulted in reciprocal decreases in activity. Thus, identification of hypervariable codon positions can be a powerful aid in the redesign of protein function, lessening the requirement for extensive mutagenesis or structural knowledge and sometimes suggesting mutations that would otherwise be considered functionally conservative.
منابع مشابه
Glutathione S- transferases and their function as a protein superfamily in plants
Glutathione s transferase (GST) is one of the largest protein and multigene families present in all plant species and other living organisms. For these proteins, which are highly inducible to stress and internal and external stimuli, several functions in plants have been identified, including implication in secondary metabolism, growth and development, detoxification of herbicides, coping with...
متن کاملVulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications
Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...
متن کاملProduction and Evaluation of Polyclonal Rabbit Anti-Human p53 Antibody Using Bacterially Expressed Glutathione S-transferase-p53 fusion protein
p53 is a key tumor suppressor gene that is targeted for inactivation during human tumorigenesis. In this study, we produced and characterized polyclonal antihuman p53 antibody. The cDNA encoding the completehuman p53 protein was cloned into pGEX-4T-1 and expressed in Escherichia coli as a fusion protein with Schistosoma japonicum glutathione S-transferase (GST). The rabbits were immunized...
متن کاملGenetic Polymorphism of the Glutathione S-Transferase M1 and Development of Breast Cancer
Glutathione S-transferases (GSTs) are encoded by a superfamily of genes and play a role in the detoxification of potential carcinogens. The human GSTs are divided into four classes: alpha, mu, pi and theta. Previous studies indicated that the absence of the Glutathione S-Transferase M1 (GSTM1) protein correlated with an increased risk of developing some types of cancers. Association between spe...
متن کاملMolecular evolutionary mechanisms driving functional diversification of the HSP90A family of heat shock proteins in eukaryotes.
The ubiquitous and conserved cytosolic heat-shock proteins 90 (HSP90A) perform essential functions in the cell. To understand the evolutionary origin of HSP90A functional diversification, we analyzed the distribution of HSP90A family from 54 species representing the main eukaryotic lineages. Three independent HSP90A duplications led to the paralog subfamilies HSP90AA (heat-stress inducible) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 10 شماره
صفحات -
تاریخ انتشار 2003